Enumeration of Some Labelled Trees

نویسندگان

  • CEDRIC CHAUVE
  • SERGE DULUCQ
چکیده

In this paper we are interesting in the enumeration of rooted labelled trees according to the relationship between the root and its sons. Let Tn;k be the family of Cayley trees on n] such that the root has exactly k smaller sons. In a rst time we give a bijective proof of the fact that jTn+1;kj = ? n k n n?k. Moreover, we use the family Tn+1;0 of Cayley trees for which the root is smaller than all its sons to give combinatorial explanations of various identities involving n n. We rely this family to the enumeration of minimal factorization of the n-cycle (1; 2; : : : ; n) as a product of transpositions. Finally, we use the fact that jTn+1;0j = n n to prove bijectively that there are 2n n ordered alternating trees on n + 1]. R esum e. Dans cet article nous nous int eressons a l' enum eration d'arbres etiquet es enracin es, en consid erant un nouveau param etre relatif a l'ordre existant entre la racine et ses ls. Soit donc Tn;k la famille des arbres de Cayley sur n] tels que la racine ait exactement k ls qui lui soient inf erieurs. Dans un premier temps, nous donnons une preuve bijective du fait que jTn+1;kj = ? n k n n?k. Ensuite, nous donnons des interpr etations combinatoires de plusieurs identit es relatives a n n en utilisant la famille Tn+1;0 des arbres de Cayley pour lesquels la racine est inf erieure a tous ses ls. Nous lions egalement cette famille a l' enum eration des factorisations minimales transitives du n-cycle (1; 2; : : : ; n) comme produit de transpositions. Finalement, nous utilisons le fait que jTn+1;0j = n n pour d emontrer combinatoirement qu'il y a 2n n arbres ordonn es alternants sur n + 1].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The enumeration of labelled spanning trees of Km, n

Using a bijection to decompose a labelled rooted bipartite tree into several ones with smaller size and their exponential generating functions, this paper concerns the number of labelled spanning trees of the complete bipartite graph K m,n .

متن کامل

Enumeration results for alternating tree families

We study two enumeration problems for up-down alternating trees, i.e., rooted labelled trees T , where the labels v1, v2, v3, . . . on every path starting at the root of T satisfy v1 < v2 > v3 < v4 > · · · . First we consider various tree families of interest in combinatorics (such as unordered, ordered, d-ary and Motzkin trees) and study the number Tn of different up-down alternating labelled ...

متن کامل

Pattern Avoidance in Labelled Trees

We discuss a new notion of pattern avoidance motivatedby operad theory: pattern avoidance in planar labelled trees. It is a generalisation of various types of consecutive pattern avoidance studied before: consecutive patterns in words, permutations, colouredpermutations, etc. ThenotionofWilf equivalence for patterns in permutations admits a straightforward generalisation for (sets of) tree patt...

متن کامل

Enumeration of Equicolourable Trees

A tree, being a connected acyclic graph, can be bicolored in two ways, which differ from each other by exchange of the colors. We shall say that a tree is equicolorable if these bicolorings assign the two colors to equal numbers of vertices. Labelled equicolored trees have been enumerated several times in the literature, and from this result it is easy to enumerate labelled equicolorable trees....

متن کامل

Varieties of Increasing

---~Y(z) = ~(Y(z)), which is non linear and autonomous. Singularity analysis applied to the intervening generating functions then permits to analyze asymptotically a number of parameters of the trees, like: root degree, number of leaves, path length, and level of nodes. In this way it is found that various models share common features: path length is O(n log n), the distribution of node levels ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007